
A Critical Determinant of Project Success

Requirements Engineering

Whitepaper

2

Requirements Engineering
A Critical Determinant of Project Success

Authors

Anton Luckhardt

fortiss GmbH,
Guerickestr. 25
80805 Munich

Prof. Dr. Daniel
Mendez

fortiss GmbH,
Guerickestr. 25
80805 Munich

Dr. Norman Schaffer

fortiss GmbH,
Guerickestr. 25
80805 Munich

kontakt@fortiss.org

3

Content

Abstract 4

Requirements Engineering – Quo Vadis 5

Deep dives 8

Requirements Engineering Quick Check 14

Challenges in RE research and practice 16

Contacts 17

4

Abstract

Efficiently handling requirements - often labelled as “Re-
quirements Engineering” - is a crucial task for successful
software development projects. Requirements - such as
functionalities that reflect business processes, require-
ments regarding the security, performance, usability
and reliability of a software system - of all stakeholders
have to be identified, processed into a structured and
understandable and traceable format, and ultimately
implemented to ensure the success of the project. Re-
quirements Engineering ultimately deals with capturing
the problem space as precisely as possible with struc-
tured approaches to requirements elicitation, analysis,
documentation, and their validation and verification. In
this whitepaper, we will give you a brief overview of the
topic of Requirements Engineering and its immediate
relevance for the success of software projects. Further-
more, we provide you with a brief insight into the ongo-
ing practically relevant research. At fortiss, we engage in
Requirements Engineering research with a strong focus
on solving real world problems. Although Requirements
Engineering might not seem as relevant as other disci-

plines at first sight and it might even seem to disappear
under the umbrella of modern development approach-
es, such as “agile”, we will demonstrate that efficiently
handling requirements is - and should be - everyone’s
concern. Further, we deep-dive into two topics: the role
humans take in Requirements Engineering and whether
agile Requirements Engineering is the holy grail (it is not).
We offer practitioners a lightweight and free-to-use tool
to understand one’s own practices and benchmark their
organization against others. Lastly, we discuss ongoing
challenges of practice-oriented research in Require-
ments Engineering, namely regulatory compliance in
Requirements Engineering, data-driven Requirements
Engineering and the role of automation, and Require-
ments Engineering for human-centered environments,
building on creativity and methods like design thinking.
This whitepaper is for practioners and researchers who
want to better understand contemporary challenges in
Requirements Engineering, including their own and who
aim at learning about ongoing research endeavours to
tackle those challenges.

5

RE is crucial for a successful software and
systems engineering

No matter how RE is ultimately carried out, it is a critical
determinant for software quality. This applies especially
to software and systems engineering in early stages, yet
it accompanies a project over its entire life cycle. This is
not surprising, considering that unambiguous and meas-
urable requirements are a basis for various implementa-
tion activities, quality assurance, and project organization
and management.

The RE process must therefore be carried out in a con-
scientous way. In reality, however, RE is often treated
with little to no care or even neglected entirely, leading
to a multitude of problems and additional effort along
downstream activities, a quality decay in the product, or
even a complete project failure. In a world pervaded by
software and where most of our daily routines are sup-
ported – if not dominated – by software-intensive sys-
tems, excellence in RE has therefore become key.

The causes for these problems in RE often differ. Still,
most often, it comes down to incorrect, missing, incon-
sistent, or ambiguous requirements. These phenomena
occur irrespective of the whether companies develop
software products on their own, whether they develop
standard or custom software, or whether they have out-
sourced their development, thus, providing requirements
to external suppliers.

Requirements Engineering – Quo Vadis

Nancy Leveson

The serious problems
that have happened
with software have
to do with requirements,
not coding errors.

1 IEEE Recommended Practice for Architectural Description for Software-Intensive Systems," in IEEE Std 1471-2000 , vol., no.,
pp.1-30, 9 Oct. 2000, doi: 10.1109/ IEE-ESTD.2000.91944.

The success of any project aimed at developing soft-
ware-intensive products and services - that is, any system
where software makes a significant contribution to the
design, development, and operation of the system1 - ul-
timately depends on how well the final project delivera-
bles reflect the diverse needs of the various stakeholders.
This process is commonly referred to as Requirements
Engineering (short: RE). A basic RE process consists of
requirements elicitation, documentation, validation, and
management. However, these activities may be different
across various existing approaches, such as the waterfall
model and agile project management.

While different definitions for RE exist (e.g. IREB or ISO/
IEC/IEEE 29148:2018 standard), we generally refer with
"RE" to roles, activities, and outcomes that define goals
and requirements for a software-intensive product or
service, regardless of the surrounding process model
and terminology used. In reality, we often observe that
RE is subsumed under the umbrella of software process
models or product management approaches, often
without even using the term “Requirements Engineering”.
In this regard, we do not even try to distinguish between
those various approaches but refer with RE to the sys-
tematic handling of requirements - from their inception
to their specification and validation - which is in scope
of any product development regardless of the chosen
approach and terminology and regardless whether it is
done explicitly or implicitly.

6

An explicit RE is crucial

The consequence of an insufficient RE is often a time
overrun, a budget overrun, dissatisfaction on the part of
the customer, and/or the failure of the entire project. The
increase in the cost of correcting incorrect or ambigous
requirements increases the more advanced the project
is when these requirements are discovered. An adequate
and explicit RE with adequate quality assurance can sig-
nificantly reduce the risks of project failure in advance.

RE is, however, not only complex, but it is also crucial for
a successful development project. 33 %2 of the errors in
software development projects are rooted in an insuffi-
cient RE. Moreover, 36 %3 of the errors that are encoun-
tered in RE, are known to lead to project failure. RE is
therefore not only complicated, but is also critical.

Figure 1: Increasing cost factor to fix RE errors at different stages of the product (Grady, Robert B. (1999). An Economic Release
Decision Model : Insights into Software Project Management. ASMC, Software Quality Engineering, 227–239.)

Figure 2: Relevance of an effective RE

Requirements
gathering

1x

Implementation

6,5x

Testing

15x

Deployment

80x

... of errors happen in RE ... of errors in RE lead
to project failure

33% 36%!

2 Hamill, M., & Goseva-Popstojanova, K. (07 2009). Common Trends in Software Fault and Failure Data. IEEE Trans. Software Eng.,
 S. 484-496.
3 D. Mendez Fernandez, S. Wagner, M. Kalinowski, M. Felderer, P. Mafra, A. Vetrò, T. Conte, M.-T. Christiansson, D. Greer,
 C. Laseni us, T. Männistö, M. Nayebi, M. Oivo, B. Penzenstadler, D. Pfahl,R. Prikladnicki, G. Ruhe, A. Schekelmann, S. Sen,
 R. Spinola, J.L. de la Vara, A. Tuzcu, R. Wieringa. Naming the Pain in Requirements Engineering: Contemporary Problems,
 Causes, and Effects in Practice. In: Empirical Software Engineering Journal, Springer, 2016

No RE approach fits all situations

To approach the various challenges in RE, academia has
developed a plethora of methodologies, templates, tools,
and even fundamentally different strategies. However,
which one to choose in which situation is mostly left to
the individuals' judgment and expertise.

The challenge here remains: even if one approach has
proven to be successful in one project, it might turn out
entirely alien to the next project’s characteristics and
needs and even the individual preferences of the project
participants. Many variables to consider can change from
project to project and even from release to release. These
can be internal influences such as the sector, company
size, product type but also external such as legal or social
influences and different technical and content knowledge
levels among the stakeholders. The vast number of in-
fluencing variables involved makes the development of a
universal one-size-fits-all solution for all stakeholders im-
possible. An agile RE is different to a plan-driven one, but
is it a better fit for all project situations (and surrounding
constraints, including regulatory ones)? The effectiveness
of RE approaches largely depends on the practicalities of
project environments. Yet, much of today’s research in RE
still relies on conventional and often purely academic wis-
dom and proposes universal one-size-fits-all approaches
to practical problems and needs not well understood.

Requirements Engineering - Quo Vadis

7

Everybody does RE

Although RE is undoubtedly an important task, our experi-
ence has shown that the general perception of its impor-
tance is comparatively low. The reasons for this can range
from a general lack of interest to sheer unawareness of
the goals and importance of RE. However, the task of
RE is not the responsibility of the requirements engineer
alone, but of all stakeholders involved.

The quality of the requirements is directly linked to the
input from all stakeholders. The requirements engineer
can facilitate this by improving awareness and using RE
techniques to act as a catalyst. RE is therefore a task that
everyone in the project can contribute to in order to in-
crease the quality of the requirements, and at the same
time, a well conducted RE process results in a benefit for
everybody involved, not only for the software developers.

8

We, the RE team at fortiss, engage in research in RE with
a strong focus on solving real world problems. With this
whitepaper, we give you a short glance into ongoing
practically relevant research in RE. In addition, to under-
stand your own organisation’s RE practices, methods
used and challenges, and to understand how you fare
compared to competitors or other industries, we have
developed the lightweight Requirements Engineering
Quick Check which we will present later.
In this section, we provide deep dives on nuanced top-
ics, which, from our point of view, will be crucial in the
upcoming years. We don’t pretend to have and to pro-
vide universal wisdom, but rather give simple insights
with high impact. With this whitepaper, we aim to raise
awareness about the relevance of RE and the challenges
it faces by providing an evidence-based perspective on
the discipline. This perspective emerges from more than
a decade of empirical research we have conducted un-
der the “Naming the Pain in Requirements Engineering”
(short: NaPiRE) initiative which constitute a global family
of investigations of practices and problems in industry
(see also www.napire.org).

Human factors are a major source for
challenges in RE

Software is developed by people, for people. In other
words, software is a by-product of myriad human activ-
ities incorporating problem-solving skills, social interac-
tions, communication, and cognitive aspects. However,
human nature is largely unpredictable and, thus, impos-
sible to capture in models. It creates intricate dynamics
in the software development process, which must be
appropriately addressed by using competent skills.

Much change occurs while software is being developed,
and agility by the project participants is required to adapt
and respond to such changes. Recently, the discipline
of software engineering has begun to adopt a multidis-
ciplinary view and has embraced theories from more
established disciplines, such as psychology, organiza-
tional research, and human-computer interaction. The
RE phase of software development is characterized by
intense communication activities involving a diverse range
of people with varying levels of skills, knowledge, back-
ground, and status, where the overall goal is to achieve a
shared and clear understanding of the problem between
different people, which is further affected by the com-
plexity, vastness, and volatility of the requirements itself.
In this context, we refer to human factors as activities
that are performed by humans and subsequently lead to
problems in the RE process (an example could be mis-
communications that result in incomplete requirements).
However, the question arises why we should care about

human factors at all. This can be answered simply by the
fact that an analysis of software projects worldwide in the
NaPiRE initiative showed that around 50% of all problems
occurring in RE are due to human factors. The larger the
projects become, the more complicated architectural or
technical decisions become. Additionally, more people
will be involved in carrying out these tasks. This creates
the challenge of managing these projects properly.

We are currently aware of the relevance of human fac-
tors, but it is still not completely understood under which
exact conditions they occur and, more importantly, how
they can be prevented. Our field of research wants to an-
swer these questions as we provide solutions that might
increase the quality of the software by avoiding many
problems in the first place.

Agile – The Holy Grail of RE?

At the time of writing this white paper and considering the
software engineering literature, one might reasonably as-
sume that “agile” has become the de-facto standard. Con-
sidering the distribution of the different working methods
of the participants of the NaPiRE study in Figure 3, the
same tendency can be observed. While only 25% of the
participants stated that they work exclusively according to
plandriven approaches, 75% already use at least a combi-
nation of both worlds, while 41% of all participants have
already switched to exclusively agile working methods.
The superordinate agile development principles include
characteristics that can be somewhat counterintuitive
for rather traditional RE where requirements are explicitly
elicited, refined and classified, analyzed, documented,
and validated. However, these agile principles promise to
overcome the challenges associated with traditional RE
by, among other things, being more open to change and
incorporating the thoughts of the people working on the
problems. However, is this really true?

Figure 3: Self-assessment of practitioners interviewed as part
of NaPiRE on which basic working methods they employ

Solely agile & Hybrid (75%)

All Practitioners (100%)

Solely
plan-driven

(25%)

Hybrid
(34%)

Solely agile
(41%)

Deep dives

9

In Figure 4 the most critical problems in RE are shown
as they occur in practice. If we compare them with the
different underlying working methods, an interesting
picture emerges.

In the future, we will deepen our understanding about
influences in the RE process, to understand which

methodologies are adequate for different application
areas. In order to be able to approach this challenge, we
are dependent on your practical experience. If you are
interested in working closely together such as in work-
shops or joint projects, please do not hesitate to contact
us (see page 17).

 The most outstanding property reflected in the re-

sults is that incomplete or hidden requirements are the

most critical problem in each category. Neither agile

nor plan-driven processes can overcome these prob-

lems. Considering agile practices welcome imcom-

pleteness, this challenge might seem surprising and

shows a possible conflict between the application of

agile practices and the personal view on requirements

of software engieneers.

 In addition, we can see that in agile approaches

the communication flaws with the customers and also

within the project team itself are somewhat lower, but

still belong to the most critical problems in the RE pro-

cess. This is in clear contradiction to the advantages

agile approaches claim for themselves.

 The problem of insufficient time boxing is predom-

inant in every working approach.

 Another interesting observation is that the problem

of moving targets occurs in the categories of exclu-

sively agile and hybrid process approaches, but not

in the top five problems in the category of exclusively

plan-oriented approaches. One of the most frequently

mentioned advantages for agile processes is that teams

are resistant to changes, but the practitioners who use

these practices still record that this is one of the top five

problems in their projects.

Figure 4: The most critical problems that practitioners perceive in the comparison of different approaches to development

All participants (100%)
Solely Plan-driven

process (25%)
Agile and Hybrid

process (75%)
Solely Agile

process (41%)

Top 1
Incomplete or hidden

requirements
Incomplete or hidden

requirements
Incomplete or hidden

requirements
Incomplete or hidden

requirements

Top 2
Communication flaws
between the project
team and customer

Communication flaws
between the project
team and customer

Time boxing Time boxing

Top 3 Time boxing Time boxing
Communication flaws
between the project

team and the customer

Communication flaws
between the project

team and the customer

Top 4
Communication flaws
within the project team

Communication flaws
within the project team

Moving targets
Communication flaws
within the project team

Top 5 Moving targets

Underspecified
 requirements that are

too abstract and allow for
various

interpretations

Communication flaws
within the project team

Moving targets

10

How RE is shaped

Status Quo Requirements Engineering:
Facts and Figures

Top 5 causes for RE problems due to human factors

Customer does not know what he wants
Missing domain knowledge
Missing customer involvment
Lack of experience of RE team members
Communication flaws between team and customer

Top 5 causes for problems in RE

Top 5 problems in RE

Top 5 effects of problems in RE

6,8%

11,3%

9,2% 9,2% 9,1% 8,2% 7,7%

5,5%

9,7%

Lack of project
management

Incomplete or
hidden requests

Missing customer
involvement

Moving targets (changing
goals, business processes

and / or requirements)

Lack of time

Time boxing/Not
enough time in general

4,3%

9,6%

Communication flaws
between team and

customer

Communication flaws
between the project

and customer

Communication flaws
within the project

team

4,1%

4,3 % 4,1 %

3,8 %

3,5 %

3,1 %

7,4%

3,8%

7,0%

Lack of experience
of RE team members

Poor product
quality

Inefficient
development

Time overrun Difficulties in
project management

Customer
dissatisfaction

Top five causes, problems and effects in practice

Number of respondents:
(each respondent representing one team)

488

11

14,29% Finance
10,3% Public sector
9,02% Healthcare
7,77% e-Commerce
7,52% Telecommunication
6,27% Automotive
5,51% Logistics
5,26% Enterprise resource planning
5,26% e-Government
5,26% Manufacturing

5,01% Energy
4,26% Education
3,51% Insurance
2,26% Human resources
2,01% Public transportation
2,01% Security
1,50% Railway
1,25% Avionics
1,25% Agriculture
0,75% Games engineering

Respondent's Experience in Years

Team Size

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

1 4 50 1500Number of team members in the RE team

Hybrid
35%

Rather agile
25%

Agile
16%

Rather
plan-driven

16%

Plan-driven
10%

80% of all teams
consists of 4 to 50

members

Development processDistribution of sectors

Average: 9 years

12

How do you elicit requirements

67% We elicit and / or refine requirements in several
iterations
30% We elicit and / or refine requirements in a
specifically dedicated project phase
3% Other

44%

56%

17%

46%

Yes No

56%

44%

83%

54%

Requirements Alignment with testing

Testers participate in requirements reviews.

We define acceptance criteria and tests for requirements.

We derive tests from system models.

We check the coverage of requirements with tests.

88% align their tests with requirements

Usage of Documentation

They are the basis for the implementation

(82%)

They are source for tests

(58%)

They are used customer acceptance

(50%)

They are a reminder for further discussions
with the customer, product owner

(41%)

They are part of the contract

(26%)

Elicitation Techniques

Observations

(35%)

Prototyping

(48%)

Workshops and focus groups

(57%)

Analysis of existing documents

(60%)

Interviews

(69%)

Design Thinking / Lean Startup

(20%)

Risk analysis

(20%)

(Requirements) Reuse database and guidelines

(17%)

External experts

(17%)

We do not elicit requirements (ourselves)

(4%)

How RE is done

13

Requirements validation techniques

(47%)

0
50

100

150

200

200

300

350

400

450
In

fo
rm

al
 p

ee
r r

ev
ie

w
s

Au
to

m
at

ic
 C

he
ck

in
g

W
al

kt
hr

ou
gh

s

Si
m

ul
at

io
ns

In
sp

ec
tio

ns

N
o

ve
rifi

ca
tio

n
/

va
lid

at
io

n

(40%) (40%)

(28%)

(16%)
(6%)

Contents of the documentation

(56%)

(47%)

Rules (e.g. business rules)

Functional properties of the systems

System behaviour

Usage scenarios

User interface(s)

Architectural constraints

Technical interfaces

Goals

Quality properties

Development process aspects

Stakeholders

Formal properties

(44%)

(39%)

(37%)

(35%)

(34%)

(32%)

(25%)

(23%)

(22%)

(11%)

Structured lists of requirements

(28%)

Use cases

(37%)

User stories

(41%)

Prototypes / User screens

(43%)

Natural language / informal (plain) text

(52%)

Use case diagrams

(28%)

Sketches

(26%)

Business process models

(25%)

Activity diagrams

(20%)

Sequences diagrams

(15%)

Class diagrams

(15%)

State machines

(7%)

Documentation Techniques

Relevance of quality requirements

Performance

Maintainability

Compatibility

Security

Safety

Reliability

Portability

Usability

50
100

150
200

14

One question might now arise: "What can be done to
improve Requirements Engineering in my environment?".
This leads us to our Quick Check for Requirements Engi-
neering, introduced next.

Currently, we can see in practice the application of many
normative approaches that attempt to provide optimiza-
tion plans by applying maturity models (e.g. Capability
Maturity Model). The application of these models is asso-
ciated with lengthy processes and a high resource invest-
ment. This is a particular challenge for organisations, as
investing in these activities requires a lot of time and fi-
nancial resources. In addition, in research, the established
approaches showed difficulties adapting to company-spe-
cific circumstances.

To address these challenges, we are committed to pro-
viding a lightweight, easy-to-use, versatile tool that RE
practitioners can use to obtain results quickly. With the
Requirements Engineering Quick Check for practition-
ers can assess the status quo of their RE practices in their
software development projects by benchmarking with
other organisations. While the Quick Check will not ren-
der existing approaches irrelevant, it is rather intended to
provide another light-weight and evidence-based alterna-
tive into the existing toolkit for RE practitioners.

The Quick Check consists of a ten-to-fifteen-minute sur-
vey that enquires about the following topics:

 Demographic/contextual information such as the
 industrial sector, team size, nature, and scope of the
 projects

 Process related questions that enquire about how
 requirements are gathered, elicited, documented,
 and applied

 Critical problems, causes, and effects you
 encounter while carrying out the projects

After completing the survey, you will be redirected to an
evaluation page. You can compare your provided informa-
tion, reflecting your status quo of RE and benchmarking
your results to other participants.

Figure 5: Overview of Requirements Engineering Quick Check

Participation in Survey Evaluation Follow-up

Demographic questions

Process related
questions

Compare own
characteristics with other

participants

Compare to only those
participants that fulfill
your own properties

Questions about problems,
causes and e�ects

Document your results for
further analysis

Engage in Workshops to
discuss results and

possible improvements

Revisit the Quick-Check
regulary for seeing

developments in own and
other companies‘

RE process

Requirements Engineering Quick Check

15

Afterwards, it is immediately possible to analyse and raise
questions such as:

• “ Do other practitioners face the same challenges

as we do?”

• “ How do others elicit requirements compared
to us?”

• “ Which quality attributes for requirements are of
relevance?”

A general view and the comparison with practitioners
from the various environments can already offer some
interesting insights into the subject. However, due to the
already mentioned non-standardisability of RE, a compar-
ison of this kind is possibly too vague, depending upon
the area you are involved in. A software system developed
for safety-critical systems or software for medical devices

If you wish to participate in the Quick Check,
please feel free to visit the website:

https://cce.fortiss.org/quick-checks/survey/requickcheck

needs to include different properties compared to a soft-
ware system for day-to-day business operations.

To enable meaningful benchmarking with other organ-
izations based on categories that are relevant to you,
and thus better tailored to your organization's unique
characteristics and your current challenges or interests,
we provide the possibility to specify the results through a
selection of filters. For example, you might only be com-
pared with organisations that operate in a similar sector,
are of a similar size and also have a strong focus on safety
requirements.

In this way, we aim to enable the comparability for your
area of application to be tailored to your needs, if required.
With these features we would like to fulfil our ambition to
provide you with the best possible basis for assessing pos-
sible problems within your RE process in order to derive
optimisation potentials.

16

We have seen that project success depends on how well
the final results reflect the different needs of the various
stakeholders. There are different approaches to software
engineering in general and in RE in particular, and their
suitability depends strongly on the context. With these
practices employed, various challenges in RE exist in
research and practice alike.

At the Requirements Engineering field of competence
at fortiss, our research currently focuses on three topics
around the plethora of challenges: Regulatory RE, Da-
ta-driven RE, and RE in human-centered environments.
With an evidence-based, problem-oriented approach, we
try to tackle contemporary challenges within research
consortia as well as industry collaborations.

 Regulatory
 Requirements Engineering

refers to an effective translation of regulatory norms and
standards (such as GDPR or Medical Device Regulations)
into requirements. The role of Regulatory RE and its rele-
vance in today’s software-intensive products and services
is reflected in the need to comply with an ever-increasing
plethora of regulations that range from preclude techni-
cal standards to ambiguous regulations on personal data
processing or AI. This is especially challenging because
regulatory requirements have a pervasive impact on all of
the software development life cycle (SDLC).

This makes regulatory RE crucial to enable seamless and
consistent compliance throughout the SDLC. We take
a "practical approach" to regulatory RE. Our regulatory
RE toolbox can help software engineers to conduct
regulatory RE by compensating for some of the required
legal knowledge. And in complex compliance settings in
which extensive legal expertise is required, this toolbox
can facilitate the engineering-legal interaction. The reg-
ulatory RE toolbox we offer is flexible enough to address
different regulations and support different regulatory RE
tasks in a comprehensive way for better compliance and
engineering results.

 Data-driven
 Requirements Engineering

reflects a rather new development within the software
engineering domain. With an increased availability of data
as well as increased use of software and systems labeld
as “AI”, the tasks associated to RE change. Complex RE
situations demand the elicitation of requirements from
different types of requirements sources. In particular, in
this research stream we aim at understanding how to
elicit, classify, prioritize, and document requirements for

AI-centric (and ML-enabled) software systems. What are
exactly non-functional requirements for such systems?
How can we specify them in an unambiguous manner
and how can we assure their quality? How can we test
them? These questions are already difficult to answer
for more traditional software-intensive systems and
pose new challenges for this new family of systems. Of
particular interest to us is to guide engineers with multi-
disciplinary backgrounds in handling such heterogenous
requirements for such systems efficiently and in a seam-
less manner. We do this by elaborating a holistic artefact
model to be used as a tailorable reference model.

Requirements Engineering in
human centric environments.

Like no other discipline in Software and Systems engi-
neering, RE is highly dependent on human factors. These
include, if not limited to, expectations and perceptions
when communicating requirements, skills, expertise, and
individual preferences influencing the choice of models
and description techniques when specifying require-
ments. Humans also tend to mix up thinking about the
problem and thinking about the solution and therefore
focus on a particular solution already in the design pro-
cess without considering all options. Those human fac-
tors render how RE can and shall be carried out as some-
thing highly unique to individual projects, as described
in the deep dives. In our competence field, we look into
different facets of these human factors to grasp the het-
erogenous challenges in-depth and develop possible
mitigation strategies. Strongly related to these challenges
– sometimes even part of the mitigation strategies – are
methods for requirements engineering in human-cen-
tered environments. These mainly refelect methods for
value-driven or value-oriented RE. In our case, we focus
on the use and integration of creativity methods into the
RE process as well as concepts and methods to under-
stand problems from a user-driven perspective, such as
by using Design Thinking methods, and their integration
into model-based engineering methods. We elaborated
an integrated view on Design Thinking for RE to promote
empathy and creativity with the tools and concepts pro-
vided by Design Thinking.

If you are interested in more details on our research, or
see similar challenges in your organization, come and
talk to us. We are not only interested in your perspective
- such as on these three topics - in general and also in
their role in your organisation, but are also explicitly open
to working on joint projects related to them.

Challenges in RE research and practice

17

Prof. Dr. Daniel Mendez

mendez@fortiss.org
+49 (89) 3603522 168

Head of competence field & Professor at BTH
Senior Scientist and Head of the Competence Field
Requirements Engineering at fortiss and Full Professor at
the Software Engineering Research Lab of the Blekinge
Institute of Technology, Sweden.

Parisa Elahidoost

elahidoost@fortiss.org
+49 (89) 3603522 428

Researcher & PhD Student
Parisa's research focus is the development of a
toolsupported approach for the automatic extraction and
compliance checking of regulatory requirements from
legal texts. She is a research associate at fortiss GmbH and
currently enrolled at the BTH's graduate program.

Anton Luckhardt

luckhardt@fortiss.org
+49 (89) 3603522 213

Deputy head of competence field & Researcher
Anton investigates human factors and problems in
software development with particular focus on cultural
dimensions. He is further leading the tool development at
the lab with a particular focus on establish an automated
platform for assessing and visualising industrial RE
practices and problems.

Oleksandr Kosenkov

kosenkov@fortiss.org
+49 (89) 3603522 195

Researcher & PhD Student
Oleksandr is investigating the area of regulatory
Requirements Engineering with a particular focus on
establishing an artefact model to guide the elaboration of
requirements from legal contexts. A domain of interest is
the one of public service media platforms. He is a
research associate at fortiss GmbH and currently enrolled
at the BTH's graduate program.

Prof. Dr. Tony Gorschek

gorschek@fortiss.org
+49 (89) 3603522 251

Researcher & Professor at BTH
Senior Scientist at the research division Requirements
Engineering at fortiss GmbH and Full Professor at the
Software Engineering Research Lab of the Blekinge
Institute of Technology, Sweden.

Dr. Jannik Fischbach

fischbach@fortiss.org
+49 (89) 3603522 455

Postdoctoral Researcher
Jannik works as a postdoctoral researcher at the research
division Requirements Engineering at fortiss GmbH and as
a consultant at Netlight GmbH. His research focuses on
applying LP methods to support developers in implement-
ing software intensive systems.

Contacts

18

Photo credits:
Title: AdobeStock © Dmitry
Page 4: AdobeStock © nongkran_ch
Page 7: AdobeStock © monsitj
Page 18: © fortiss

Publisher
fortiss GmbH
Guerickestraße 25
80805 Munich

Layout
fortiss GmbH

Print
viaprinto GmbH & Co. KG

ISSN Print
2699-1217

ISSN Online
2700-2977

1st Issue:
April 2023

Find here more
fortiss Whitepaper

Imprint

19

fortiss is the Free State of Bavaria research institute
for software-intensive systems based in Munich.
The institute collaborates on research, development
and transfer projects together with universities and
technology companies in Bavaria and other parts
of Germany, as well as across Europe. The research
activities focus on state-of-the-art methods, tech-
niques and tools used in Software & Systems-,
AI- and IoT-Engineering and their application with
cognitive cyber-physical systems.

fortiss is legally structured as a non-profit limited
liability company (GmbH). The shareholders are
the Free State of Bavaria (majority shareholder) and
the Fraunhofer-Gesellschaft zur Förderung der
angewandten Forschung e.V.

Although this white paper was prepared with the
utmost care and diligence, inaccuracies cannot be
excluded. No guarantee is provided, and no legal
responsibility or liability is assumed for any damages
resulting from erroneous information.

20

fortiss GmbH
Guerickestraße 25
80805 München
Deutschland
www.fortiss.org
Tel: +49 89 3603522 0
E-Mail: info@fortiss.org

