
Automating the Integration via Semantic
Technologies

Brownfield Devices in IIoT

White Paper

2

Brownfield Devices in Industrial Internet of Things –
Automating the Integration via Semantic Technologies

Authors

Kirill Dorofeev

fortiss GmbH
Guerickestr. 25
80805 Munich

Hendrik Walzel

fortiss GmbH
Guerickestr. 25
80805 Munich

Prof. Dr. Rute C. Sofia

fortiss GmbH
Guerickestr. 25
80805 Munich

kontakt@fortiss.org

3

Content

Abstract 4

I Introduction 5

II Related Work 7

III Semantic Interoperability Background 8

IV Interoperability at the Network Level 12

V Active Research Directions in fortiss IIoT 15

VI The fortiss IIoT Lab Brownfield Device Integration Demonstrator 18

VII Summary 20

VIII References 20

Imprint 22

4

Abstract
This whitepaper provides an overview on seman-
tic interoperability aspects within the context of
Industrial Internet of Things (IIoT) by fortiss, specifi-
cally focusing on concepts that can assist a much
needed automated integration of Operational
Technology into Information Technology, from an
end-to-end perspective. The whitepaper provides
the vision of fortiss for such integration to happen,

namely, aspects that need to be addressed from
both an application/session layer and networking
layer perspective. The whitepaper describes also a
specific instantiation being under development by
fortiss within the context of its Industrial IoT Lab,
namely, the “IIoT Lab Brown field device integration
demonstrator”.

5

 Introduction
The recent trend of Flexible Factory [1] implies, at
an ultimate level, the integration of sensors and other
Internet of Things (IoT) devices and systems on
industrial plants to improve monitoring, manage-
ment as well as the overall operation of industrial
elements, e.g., machines, robots. The data collec-
ted via IoT systems is used in several aspects. For
instance, it can be used to perform local or remote
maintenance, providing status data about a specific
environment or machine. It can also be used for
the fast replication of real assets via virtual represen-
tation (e.g., digital twin). Or, it can support a better
development of services in real-time, tailored to the
requirements and capabilities of different machines
with the ultimate aim to improve efficiency and pro-
ductivity.

In industrial environments, advanced IoT equipment
today co-exists with a large number of legacy devi-
ces also coined as brownfield devices, i.e., devices
which cannot, per se, be integrated into IoT plat-
forms, be it Cloud- or Edge-based, given that the
description of such devices is not understood by
more recent IoT systems. Examples of brownfield
devices are, for instance, industrial robots, or
Programmable Logic Controllers (PLCs).

Brownfield devices are part of the category of the
so-called Operational Technology (OT). OT equip-
ment has a long lifetime often running for decades
and implies heavy investment, thus OT replacement
is not easy to do.

Moreover, due to the lack of automated data ana-
lytics support, OT is often managed via manual
processes. OT data is often manually handled by a
human operator. This manual process leads to mis-
takes and to the lack of a systematic, standardized
data recording, often preventing also a comparison
of performance across different devices thus pre-
venting a higher degree of efficiency.

One approach to assist in integrating the OT data
and eventually associated processes, is to consider
reliable solutions that can automate the data collec-
tion of such devices locally (on the shop-floor). This
means collecting and analyzing data from legacy
equipment without adequate end-to-end infrastruc-
ture. Such approach is often based on proprietary
hardware/software solutions which are tailored to
specific equipment and to specific, usually proprie-
tary, protocols for data exchange. Hence, the de-
sign of the underlying communication architecture
often does not consider aspects such as security,
since the exchange of data is done locally, in trusted

environments. The devices operation and their
maintenance are also performed locally.

The interconnection of brownfield devices into
end-to-end IoT systems assists the development of
novel services as well as to perform administration
and maintenance remotely. Moreover, advanced
data analytics and even advanced sensing methods
can also be integrated into industrial environments.
However, such integration faces several challenges.
A first challenge concerns security. IoT protocols/
protocol frameworks such as OPC-UA and MQTT
have been developed to run on top of the TCP/IP
stack. End-to-end security by design is not an intrin-
sic feature of current IP-based messaging protocols
(e.g., MQTT, AMQP). OPC-UA as a protocol frame-
work supports secure communication between
data sources and consumers. However, OPC-UA
cannot ensure the complete isolation of a plant
network when connecting IIoT infrastructures, as to
access data from OPC UA server, an OPC UA client
outside the plant network needs an open firewall
port. The answer currently provided to this issue is
to keep OPC-UA for the in-plant communication,
and to provide interoperability with other IP-based
messaging approaches, for instance OPC-UA to
MQTT, to support the articulation of communica-
tion to the overall end-to-end IoT system (Edge-
Cloud).

A second challenge concerns the need to support
asynchronous communication both at a field level,
and from Edge to Cloud.

A third aspect concerns the need to provide a com-
patible “Thing Description”, so that IoT systems can
interpret brownfield devices as a ”Thing”, or as a set
of Things. To further assist a smoother integration
of legacy devices, open-source end-to-end IIoT
systems need to:

 integrate middleware that can provide a
meaningful software-based abstraction of
brownfield devices;

 provide a compatible semantic description of
a brownfield device to an IoT system. In other
words, such solution would have a way to
interpret the aspects that compose the device
(measurement, state, and device’s functionality)
as the aspects that compose a Thing.

On the field-level, there are a few solutions being
worked upon to assist this integration. For instance,
some devices which can be upgraded are being
coupled with specific protocol, such as OPC-UA or
MQTT Sparkplug bindings. The protocol bindings
are the basis to send data to the IoT Edge/Cloud.

6

Another approach being considered concerns re-
lying on a software-based solution (a soft gateway)
that then is tailored to the specific support of legacy
devices on a specific environment.

Our approach considers that a software-based ab-
straction can assist in defining a generic device not
only in regards to its properties, but also in regards
to its capabilities and functionalities. Such abstrac-
tion can then be fed to an IIoT system, and be inter-
preted as a regular, virtual ”Thing”, or set of ”Things”.
Hence, a key part of this concept concerns the
development of an automated software-based so-
lution that receives as input a skill-based model of a
brownfield device, and provides as output a seman-
tic description of a Thing, based on Web of Things
(WoT) standards.

This paper is therefore focused on a debate of con-
cepts currently under development by fortiss, and
which address how to best support the integration
of brownfield devices in IIoT systems, from an end-
to-end perspective.

The main contributions of this white paper are as
follows:

• the paper provides a notion of semantic inter-
operability in the context of IIoT, and in particu-
lar, in the context of an automated integration
of OT systems into IT systems.

• The paper describes concepts and technolo-
gies being developed at fortiss to further assist
such integration, specifically focused on
i) assisting a bi-directional communication to
 OT equipment, from an IIoT system;
ii) concepts derived from intent-based net-

working, which may help in making the un-
derlying infrastructure adjust, with a re duced
need for human intervention, via the use of
expressions of interest derived from services
and applications, coined as ”Intents”.

• The paper summarizes research questions
being addressed by fortiss in the context of
semantic interoperability in IIoT environments.

• The paper describes the current demonstra-
tor being developed at fortiss, in the IIoT Lab,
high lighting novel software concepts under
development.

The white paper is organized as follows. After this
introduction, section II describes related literature,
highlighting our expected contributions. Section III
provides background on semantic interoperability
aspects that are relevant to understand the context
of our work, such as the role of the World Wide
Web Consortium (W3C) standards; how different
entities are handling interoperability of data models;
a model for an extensible semantic gateway; the
skill-based engineering model for abstracting
brownfield devices status, processes and properties.
Section IV focuses on new paradigms concerning
the required IoT infrastructure adaptation, by focu-
sing on ”what” is to be processed, and not on ”who”
(host, device) is the data source, namely, debates
Intent-based networking and the roles of Intents,
and provides a brief description of Information-
centric Networking (ICN) as a relevant architecture
for future IIoT systems. Section V provides an over-
view of the research questions and directions being
addressed in fortiss. Section VI describes the fortiss
IIoT Lab demonstrator for brownfield device integ-
ration for which a first version shall be available in
November 2020, while section VII summarizes the
white paper and its contributions.

7

 Related Work
A first category of work related to ours, concerns
the description of IoT cyber-physical systems
(Things) and its communication interfaces in a uni-
versal way, avoiding silo deployments both in terms
of equipment/software capabilities, and of data
exchange capabilities. This is, for instance, the main
aim of the W3C, which has recently adopted as
official Recommendations the Web of Things (WoT)
Architecture1 and the WoT Thing Description (WoT
TD)2 [2] in the context of its WoT working group3.
The WoT architecture recommendation provides an
overall conceptual framework for a WoT, proposing
specific building blocks to achieve end-to-end
interoperability in IoT environments. The WoT TD
specification provides a universal model for both
meta-data and interfaces of Things and is further
addressed in section III. Such approach assumes
that the IoT devices can be modeled as WoT Things,
i.e., that they can be expressed via a JSON-LD for-
mat.

Our work considers the WoT as a centerpiece, but
assumes that some devices are not capable of ex-
pressing the meaning of their interactions, and,
there fore, require an additional level of abstraction
to be interpreted as Things, as described in section
III-E. In this case, the intention is to use and eventu-
ally extend WoT specifications to smoothly incor-
porate properties derived from, e,g., a skill-based
engineering model of field-level devices.

Interesting in this context are IoT integration plat-
forms such as Wotify [3], a W3C intermediary plat-
form, which allows developers to quickly create
their projects by uploading or reusing WoT TD
descriptions for sensors, actuators, or other types
of equipment modeled via a WoT TD. Being highly
relevant to increase the use of WoT, it does not
contemplate an automated integration of legacy
devices, an aspect which is pursued with this work.

Additional related work has been attempting to
contribute to an automated integration of legacy
devices in specific application domains. For in-
stance, Mossamer et al. address such integration
in regards to the energy domain [4]. The authors
introduce an abstraction approach, an automated
embedded annotation engine, that reduces the
need to depend on specific addressing schemes
and can handle devices supporting legacy auto-
mation protocols based on IEC 60870-5-104, Mod-

1 https://www.w3.org/TR/wot-architecture/

2 https://www.w3.org/TR/wot-thing-description/

3 https://www.w3.org/WoT/WG

bus. Such engine reduces the need to handle each
legacy device individually (providing augmented
annotation for each device). Rachetti et al. provide a
proposal for an Abstraction Layer Object Oriented
Architecture (ALOOA) and its application to Motion
Control [5]. ALOOA is an Abstraction Layer for PLCs
that relies on Object-oriented features from IEC
61131-3. In contrast, our skill-based model approach
described in section III-E aims at being agnostic of
the underlying implementation.

Petrolaukis et al. provide the notion of a semantic
gateway and an end-to-end semantic architecture
for the IIoT, specifically addressing the application
domain of eHealth and Energy [6]. A middleware,
the Semantic Mediator, assists in providing a se-
mantic mediation abstraction for legacy devices,
by mapping a specific domain brownfield semantic
standard into WoT TD. Our work shall build on the
Semantic Mediator component, as is further explai-
ned in sub-section III-C, and shall provide a map-
ping to another type of abstraction model, the skill-
based engineering model, described in section III-E,
in a way to prevent silos developed around specific
protocols.

Another category of work related to ours concerns
attempts to automate the description not only of
measured values but also of the sequential beha-
vior of devices. This is particularly relevant to assist
an adequate integration of legacy equipment into
end-to-end IIoT environments. In this category of
work, Korkan et al. propose an extension to WoT
TD which increases semantic expressiveness and
provides a way to integrate valid state transitions [7].
According to the authors, behavior of devices can
then be expressed so that devices can be handled
as part of an IIoT ecosystem, thus reducing overall
manual intervention. Our work shall consider the
proposal of Korkan et al. and check the capability
of their proposal to integrate the logic and state
machine of PLCs abstracted via our skill-based engi-
neering model.

A final category of related work concerns the need
to also adapt the underlying infrastructure, i.e., to
bring automation to the network interconnecting
OT and IT, to best support service automation
end-to-end. This line of related work, Autonomic
Networking [8], looks into the adaptation of hard-
ware-centric and manually managed networks into
controller-led networks, that relies on business/
service expressions of interest (Intents) [9] and
translates such Intents into network policies that
can then be automated so that the network devices
can continuously monitor and adjust the network
performance to assist in reaching the desired (busi-
ness) goals. This notion, defined as Intent-based

8

Networking (IBN) [9], is relevant also to be applied
into the smooth integration of OT and IT. Intents in
this context are abstract, high-level descriptions of
how the services can be automatically implemen-
ted from an end-to-end perspective, providing the
automated means to establish a network that best
serves the respective service automation. These ab-
stractions, therefore, model the network, by expres-
sing ”what” the end-user/field-level device needs
from the network, without handling ”how” it will be
handled by the network. Our work shall address the
definition and classification of Intents in the context
of brownfield integration, attempting to come up
with automated ways to define and classify Intents
[10] and assist the network in adjusting to the needs
of devices and of their processes.

 Semantic
Interoperability
Background
A full integration of individual devices into an over-
all system requires interoperability on three levels:
technical, syntactical and semantic interoperability
[11]. Technical interoperability refers to connectivity-
related aspects and the respective hardware as
well as software components that enable com-
munication. Syntactical interoperability specifies
data formats as well as communication protocols
and defines the syntax as well as encoding mecha-
nisms for data exchange. Semantic interoperability
describes the meaning of the exchanged data and
thereby creates a common understanding between
all involved components [11]. In that sense, our
approach aims at bridging the gap in regards to
allowing legacy devices to be integrated into end-
to-end IIoT systems, in a way that supports such
devices as Things. This section goes over different
approaches being applied to support the integration
of brownfield devices into sophisticated, end-to-
end IoT systems.

A. The Web of Things Approach
As described in section II, the W3C has recently
released official recommendations for a WoT ar-
chitecture and a WoT TD. The WoT provides a
software- based, multi-domain and multi-network
semantic interoperability layer. Its semantic vo-
cabulary is aligned with iotschema (rf. to section
III-B). Therefore, the WoT TD provides both a way
to abstract Things and to support interfaces to the
required IoT protocols. Therefore, WoT descriptions
allow IoT data to to run over different protocols.

A WoT TD is seen as an entry point for a Thing, si-
milarly to the function that an ”index.html” has in a
website. A WoT TD has 4 main components: textual
meta-data related with different protocol bindings
and identified by URI schemes; a set of Interaction
Affordances, which provides a description for speci-
fic action and even triggered interactions (how the
Thing is used); machine readable schemas for data
exchange; Web links to express formal or informal
relations to Things and to Web documents.

Interaction Affordances currently comprise three
main categories: properties, actions and events.
Properties model sensed/control values (including
setting an operation state). Actions model the in-
vocation of physical processes, e.g., to manipulate
the internal state or start a process. They can also
be used to abstract RPC-like calls. Events are used

9

to model a sender-driven, push-based, asynchro-
nous communication, where notifications, discrete
events, or streams of values are sent asynchronous-
ly to receivers.

It is relevant to highlight that a TD is quite flexible,
and integrates the possibility to consider contextual
definitions for a specific namespace. Context can
therefore assist in modeling formal knowledge as-
sociated with a specific application domain. It can
also provide a way to specify configuration and be-
havior associated to specific protocols (declared in
the forms field).

B. Providing semantic definitions: iotschema.org
iotschema4 is an open effort that provides shared
vocabularies for IoT domains. It provides a common
semantic layer for interconnecting Things based
on different modeling languages. In IIoT, iotschema
provides the tools required to create semantic de-
finitions on specific domains. iotschema is used,
for instance, by IoT platform providers to assist in
a smoother integration of third-party applications.
iotschema can also be used by device vendors to
push for a Web wide adoption. Finally, it is also re-
levant to provide application portability in different
environments, and to create domain-specific lan-
guages to support the interconnection of Things.

A highly relevant aspect of iotschema is the possi-
bility to specify capabilities of objects in the form
of interactions, thus, assisting objects of different
domains to more easily interconnect. An iotschema
capability is the smallest composeable unit of func-
tionality and is used as a basis to compose interac-
tion patterns.

The iotschema Meta-model is composed of the
following elements:

• Property, readable and optionally writable state
element.

• Action, a parameterized incoming state change
with rich responses.

• Event, a parameterized outgoing state change;
a message describing some occurrence.

• Capability, a set of properties, actions, events
that provide common interaction affordances.
It usually relates with a scoped function and is
defined with some semantic meaning, e.g., ”on/
off”, ”temperature measurement”. Can be used
to support the definition of larger aggregations.

4 https://iotschema.org/

• Data types, corresponding to associate seman-
tic meaning with data constrains, e.g., Tempera-
ture data; number type; units.

C. The SEMIoTICS Approach to Brownfield Integration
The SEMIoTICS project5 is focused on the support
of Industrial IoT ecosystems comprising sensors
and field-level devices, for the purpose of a better
monitoring.

A specific use-case of SEMIoTICS is based on the
interaction between a legacy device and its control-
ler (a wind turbine with a specific control system –
Siemens SIMATIC S7). The measurements provided
by sensors are obtained via an OPC-UA server, run-
ning on a Siemens SIMATIC PLC, i.e., the end-point6.
So a question answered by the SEMIoTICS project
is: ”how to integrate IoT sensors into existing auto-
mation systems”. For that purpose, SEMIoTICS has
contributed with specific semantic specifications
of brownfield devices based on iotschema. The
approach followed by SEMIoTICS is therefore one
of a semantic mapping from brownfield semantic
models into IoT semantic models.

Such semantic mapping aims at providing a unified
support for semantic standards of different domains
into iotschema. The SEMIoTICS gateway [5] ad-
dresses this unification in terms of semantic packs
(or semantic nodes). Therefore, it aims at handling
brownfield integration per domain.

Within the semantic gateway, a component, the
Semantic Mediator, serves the semantic mapping be-
tween different data models [12]. The Mediator caters
for greenfield and brownfield devices. The function
of the Mediator is to make a device programmatically
accessible based on the mapped WoT TD.

In the case of the brownfield devices being connec-
ted to the mediator, an additional step is required
in order to create a WoT TD based on the informa-
tion extracted from the brownfield device. In [6],
Petroulakis et al. show a potential way of providing
such a mapping from existing PLC into a WoT TD.
After exporting the tags from a PLC program, the
Mediator creates the corresponding programmable
components, e.g., Device Nodes to allow for inter-
action with the device, based on their WoT TD. The
Mediator then provides access to the device capa-
bilities via a standardized Web API which runs on a
WoT servient component7.

5 https://www.semiotics-project.eu/

6 OPC-UA follows a client/server architecture where clients
are more sophisticated than clients in the usual client/server
architectures, and where servers reside in end-points.

7 https://www.w3.org/TR/wot-architecture/

10

D. Towards Unified Data Models, OneDM
The integration of individual devices into an overall
system requires all hardware and software com-
ponents to share the same meaning about the
provided data and available functionalities. Within
one domain, most devices serve the same context,
purpose and objectives. Therefore, such a common
understanding is implicitly given by knowledge
about that domain, or documented in manuals
or technical reports. Still, mechanisms that aim to
integrate devices automatically require explicit,
formally defined models.

Most legacy machines used in production contain
legacy PLCs. Those PLCs provide a vendor-spe-
cific interface to access devices’ data. Vendors,
such as, for example, Siemens and Beckhoff, intro-
duced proprietary fieldbus systems to enable data
exchange between single controllers and thereby
devices, i.e. machines and systems. Those fieldbus
technologies comprise vendor-specific specifica-
tions regarding the hardware and software inter-
face. Furthermore, they introduced individual
models that describe the location as well as the
meaning of the data that can be accessed. There-
by, the different fieldbus technologies created en-
closed ecosystems with very limited interoperability
functionalities. Therefore, the integration of devices
from different ecosystems requires a lot of effort as
well as further hardware equipment and software
tools. One approach to facilitate the interoperability
between ecosystems is the establishment of
domain-wide standards and models.

Out of the different approaches that attempt to
provide some level of unification in regards to
data models, the recent (2019) One Data Model
(OneDM) 8 effort should be accounted for. OneDM
is a voluntary effort developed by several IoT Stan-
dards Development Organizations (SDOs) and IoT
device and platform vendors. It focuses on creating
consistency between the different IoT data models
available via the use of the Simple Definition
Format (SDF) for OneDM definitions. OneDM relies
on a meta-model that is similar to iotschema (rf.
to section III.B.), and SDF can be used to create
iotschema definitions.

E. Abstracting Legacy Devices: a Skill-based Enginee-
ring Abstraction Model
Albeit automation systems are becoming smarter,
via the introduction of sophisticated technologies,
in industrial domains there is still a massive number
of legacy devices that execute production and that
are managed in a semi-automatic way. The integra-
tion of such devices with a low effort into smarter
IIoT environments, being able to take advantage
of their data to improve aspects such as reliability
and efficiency are crucial for industrial domains.
The centerpiece of almost every control system is
a PLC, which is normally programmed to control a
specific process by gathering the information from
sensors and manipulating actuators. In this context,
Dorofeev et al. have introduced a generalized skill
interface. This interface represents the data exchan-
ges and function invocations that constitute a sys-
tem operation for control components [14][15].

8 https://onedm.org/, https://github.com/one-data-model/
oneDM

Figure 1: A skill concept [15].

OPC UA Client

OPC UA Server

Station
Control

State
Machine

OPC UA Server

State
Machine

GRIPPER

Skills

OPC UA Server

State
Machine

ROTARY INDEXING TABLE

Skills

OPC UA Server

State
Machine

OTHER FUNCTION UNITS

Skills

call Skills call Skills

call Skills

11

A skill provides an abstraction interface to access
the devices’ functionality. A generic skill model re-
mains the same for any functionality of a hardware
or software module being offered by that module.
Moreover, skills exist at different levels of a control
hierarchy and can be combined, often following the
hardware structure of a machine, as it is shown in
Figure 1. The skill model itself is defined in a proto-
col-independent way. An instance of this model has
been realized using the OPC-UA information model
in its first reference implementation [14].

The skill model defines a set of states, control
methods, and events that represent i) the behavior
of a control component, ii) a way to trigger it and
iii) the intermediate and resulting data for each exe-
cution. This is a flexible abstraction approach, that can
be easily extended in order to reflect the specifics
of a skill of any complexity. The concept of skill-
based engineering deals with designing automa-
tion systems based on adequate orchestration of
required skills needed for realizing a particular pro-
duction process steps. In this way, manufacturers of
automation components focus on developing and
providing resources that offer certain functionalities
that match the required skills for a certain process
steps. That strategy allows new possibilities in terms
of engineering and configuration of automation
systems and increases cross-vendor interoperability.

The skill-based state machine, as illustrated in Figure 2,
is composed of a minimum state machine with its
methods and events. The generic skill-based state
machine, describing the PLC’s functionality, has
four states, which are mandatory for each skill:

 Locked: Starting the skill execution is not all-
owed and no physical motion or production
data transformation takes place. An Error sub-
state is usually reasonable.

 Idle: Represents the availability of a skill for
execution. No motion or data processing takes
place.

 Executing: The skill is being executed and
motion or production data transformation can
take place.

 Suspended: Halted state which can be either
recovered to Executing, in which the parame-
ters passed with the original start() command
are reused, or cleared to return to Idle.

Knowing these four general states of a skill, an over-
all orchestrator can control the execution of a skill,
triggering the state changes (for example, from
Idle to Executing) and observing the current state.
When ever a skill state machine is changing its state,
a transition event is fired which can be monitored
by the orchestrator, so that it can make further
process steps. For example, in Figure 1 the over-
all cell orchestrator is controlling its components
over such state machines, executing their skills in
a sequence required for the production process. If
needed, the four mandatory states can be extended
by an indefinite number of substates, which makes
the overall model flexible and capable of modeling
a large variance of possible functionalities.

An OPC-UA server represents the skill as an object
in its address space, offering a generic interface
that enables an access to the PLC functionality in
a universal way. This object can be of any type that
inherits from the SkillType, an abstract type that
serves as a parent class for all skill implementations.
SkillType should define a capability that the respec-
tive skill fulfills. These capabilities can be classified
in some ontology, for example, VDI 2860, that de-
fines a set of handling operations and can be used
for such classification of the individual production
steps.

The skill object itself defines an instance – a specific
implementation – of a skill with all the details that a
potential skill consumer should know about it befo-
re executing the skill. This includes all of the states,
control methods and transition events that this skill
instance has as well as all additional data, such as
input/output parameters, etc.

Figure 2: Skill-based state machine.

Idle

lock(), ErrorEvent

ErrorEvent

Initial suspend()

unsuspend()

start()

“Optional”
Suspended

Locked Executing

reset() stop()

cleanUp()

ErrorEvent

12

 Interoperability at
the Network Level
A. Adapting the Infrastructure: Intents and
Intent-based Networking
Modern IoT applications are composed of several
services that provide, share and consume data over
networked environments, such as industrial plants
[16]. The elements that compose such an IIoT en-
vironment are often mobile and communicate over
heterogeneous networking protocols and different
protocolar frameworks (and different protocol ver-
sions). The complexity to handle the required inter-
connection increases with the number of devices
involved (sources and destinations), services, and
technologies applied. In these scenarios, the net-
work remains static, i.e., network management is
often provided in a static way, and reconfiguration
requires human intervention. This results in confi-
guration errors and in environments that can hardly
adjust to novel services. However, modern IoT ap-
plications such as AR/VR, AI, require a network that
adapts to changing IoT application configurations
and their demands.

One way to make the network adaptable is to con-
sider the concept of Intents (rf. to section II), where
Intents can be expressed via semantic technologies.
Intents are applied in multiple environments. For in-
stance, in autonomic networking and with the pur-
pose of assisting self-management, Intents are user-
defined policies, i.e., ”An abstract, high-level policy
used to operate the network. Its scope is an auto-
nomic domain, such as an enterprise network. It
does not contain configuration or information for
a specific node (...). It may contain information per-
taining to a node with a specific role (for example,
an edge switch) or a node running a specific func-
tion. Intent is typically defined and provided by a
central entity” [8]. It serves as an interface between
the network and Intent Users, e.g. service operators,
network administrators, or application developers,
that request certain network functionalities. Intent
Users declare what operations shall be performed
by the network without providing functional or ope-
rational details. The network determines courses
of actions and triggers functions for orchestration,
configuration, monitoring, and measurement.
Thereby, the network is able to adapt to current
application demands. Furthermore, Intents are in-
variant to the network infrastructure9. This means
that Intents do not change when the infrastructure

9 https://datatracker.ietf.org/meeting/interim-2019-nmrg-07/
materials/slidesinterim-2019-nmrg-07-sessa-intent-based-
network-summit-2015

changes, for instance, when nodes or links become
unavailable, or when mobile devices roam. Monito-
ring and measurement functions inside the network
evaluate its performance and compare them to the
desired requirements given by the Intent.

Cisco applies the concept of Intent-based Networ-
king to automate and therefore facilitate the ma-
nagement of enterprise networks. There, Intents are
specified in business language and describe what
the business wants from the network, e.g. “I want
these servers to be reachable from these branches;
therefore, I need to configure specific VLAN, sub-
net, and security rules on each device in my net-
work” 10. The respective low-level network policies
that execute a given intent, the how, are generated
within the Intent-based network. The network ”con-
tinuously monitors and adjusts network perfor-
mance to assure the desired business outcome” 11.
For this, Cisco defines three essential functions:
Translation, Activation, and Assurance. Firstly, a
given business intent is translated into network poli-
cies and checked for integrity. Secondly, the IBN
orchestrates the generated policies and configu-
res the low-level system components. Thirdly, the
execution is permanently monitored and checked
against the given business intent. If drifts occur,
corrective actions are triggered autonomously.

In Intent-Driven Networks as proposed by Elkhatib
et.al. [17], an Intent is defined as a tuple of a verb,
object, modifiers, and subject. The verb, which ex-
presses the desired operation, is specified using a
given ontology and further parameterized by the
modifiers. The object and the optional subject refer
to services, objects, or items that are objectives of
operation. Elhabbash et.al. use those Intent definiti-
ons to adaptively select service instances at applica-
tion runtime [18]. There, two instances of an online
document editing service, i.e. Google Docs, are
deployed at different location within the network,
i.e. at the Edge and on the Cloud. Different service
user clients define and send Quality of Service
(QoS) requirements, e.g., response time, that need
to be fulfilled when they want to connect to the
service. A mediator component inside the network
receives those requirements and selects as well
as connects the user clients to a specific service
instance. When user clients connect or disconnect
from the service, the mediator reevaluates the cur-
rent set of received Intents and, if necessary, adapts
established connections.

10 https://www.cisco.com/c/dam/en/us/solutions/collateral/
enterprisenetworks/ digital-network-architecture/nb-09-
intent-networking-wp-cte-en.pdf

11 https://blogs.cisco.com/datacenter/how-to-create-
networks-that-meetyour-intent

13

Intents can, however, have other forms. For instance,
in LTE Direct Intents are defined as expressions [19]
sent via LTE beacons to devices in the vicinity, to
broadcast specific information. LTE Direct Expres-
sions are 128-bit service layer identifiers that can
represent different things, for instance, an object
identity, a service, a capability, or location. Thereby,
things are able to inject meta-data about its context,
etc. to the system without further specification how
these should be processed.

In the Android Operating System (OS), Intents are
defined as messaging objects that are ”used to re-
quest an action from another app component” 12.
In case the other app component is unknown at
design time, the developer creates an implicit Intent
to describe the desired action, e.g. taking a photo.
Such an Intent comprises

• an Action string that specifies a generic action
to perform;

• e.g. ACTION_IMAGE_CAPTURE13;

• a Data URI that references the data to be acted
on and/or the MIME type of that data;

• a Category string that defines the kind of com-
ponent that should handle the intent, and

• an optional Extras field that carries additional
information required to accomplish the reques-
ted action.

When an Intent is sent from an App to the Android
OS, the system uses the first three properties to re-
solve it. The Android OS checks the available infor-
mation of the current setup, i.e. manifest files of all
currently installed apps, and selects an appropriate
app component to start.

12 https://developer.android.com/guide/components/intents-
filters

13 https://developer.android.com/guide/components/intents-
common

B. Information-centric networking
ICN paradigms, of which Named Data Networking
(NDN) 14 is one of the most popular operational
examples, are focused in ways to reach information
objects, while in contrast today’s Internet is focused
on host reachability. The architectural design of
ICN paradigms comprise by design the following
aspects:

• receiver-driven asynchronous publish-subscribe
communication.

• integrated security, not just in terms of data as
well as in terms of data and naming binding.

• flexible and reliable data-centric multipath
routing.

• flexible naming space.

• built-in mobility support (interface abstraction,
Face, and no use of addresses) [21].

ICN is emerging as a new stack which is being ex-
plored in multiple areas. However, it is in the field of
IoT that ICN is gaining ground, as explained next.

14 https://named-data.net/

14

There are several ICN architectures being explored
from an end-to-end perspective, being the most
popular ones the Content Centric Networking
(CCNx 15, 2010), by PARC and partners; NDN (2014),
by UCLA and partners; Hybrid ICN (hICN 16, 2014),
by Cisco. CCNx, originally developed by PARC, gave
rise to both NDN and hICN. All of the 3 mentioned
software architectures are therefore quite similar,
being the main difference the fact that hICN is an
adaptation of ICN to IP (overlay approach). While
CCNx and NDN can run directly on top of the OSI
MAC Layer.

The original CCN has been adopted by the IRTF
working group ICNRG17. Moreover, in what con-
cerns relevancy for IoT, the most popular approach
today is NDN as it supports all IoT basic require-
ments [20].

The ICN/NDN architecture embodies a publish/sub-
scribe pull-based communication model. Producer
nodes correspond to devices that send data (Data
packets), once they get an expression of interest by
consumer nodes (Interest packets). Data packets
are sent back following ICN forwarding strategies,
and based on the network state (breadcrumbs) left
by Interest packets in routers along the way.

Moreover, NDN follows a store-and-forward prin-
ciple and hence, any node in the network acts as
an NDN router, and holds three different data struc-
tures: the Forwarding Information Database (FIB),
the PIT, and the Content Store (CS) database.

The FIB holds aggregated name prefixes for data
objects matching outgoing Faces (interface abstrac-
tion). It should be highlighted that a Face can inter-
connect to different networking technologies, as
well as to different applications, services, etc.

To fetch content, a consumer sends an Interest
packet to the network containing the name of the
required content. When an NDN node receives an
Interest message, it first queries matching data in its
local CS. If the data is locally available, a matching
Data packet is sent back to the consumer through
the same Face. Otherwise, the node updates its PIT
table with the Interest packet name prefix, associa-
ted to the incoming Face.

If there is no match in the PIT, then the node for-
wards the Interest packet further over the recorded
outgoing interface(s) in the FIB. When the Interest
packet reaches a potential data provider or a node

15 https://github.com/ProjectCCNx/ccnx

16 https://fd.io/docs/hicn/latest/

17 https://datatracker.ietf.org/rg/icnrg/documents/

having a matching Data packet in its CS, a Data
packet is generated and replied back to the consu-
mer, following the chain of the intermediate nodes.
During the forwarding process, each node replica-
tes the Data packet to all recorded incoming inter-
faces in the matching PIT entry, keeps a copy in the
local CS, and then deletes the related PIT record.
Thus, NDN traffic is self-regulated, and in each link,
for the same object, there is at most one Data and
one Interest packet.

The operation of NDN is therefore based on a pull-
model, where consumers first express interest
about a specific object. Nevertheless, NDN supports
a second model, push-based, derived from applica-
tions where data can be directly pushed to multiple
consumers, without having these specifically ex-
pressing an interest before. As NDN is a network
layer solution, push based models can be imple-
mented by applications in a variety of ways [22].

Furthermore, in large-scale scenarios NDN provides
Interest aggregation within the PIT structure (ag-
gregation of multiple Interest requests onto a single
aggregate request). In-network caching allows con-
sumers to retrieve cached content from intermedia-
te routers, and not necessarily from producers. The
different forwarding strategies (e.g., anycast) allow
NDN to take into consideration availability and res-
trictions of devices.

Summarising, today there are several relevant ap-
proaches to provide interoperability at the network
layer. These approaches are content-centric or
named-data based, and take into consideration
application requirements, as well as context-aware-
ness, to best adjust the networking infrastructure to
the needs of services and of critical environments.

15

 Active Research
Directions in fortiss IIoT
A. Automated Translation of Skills to WoT TD
The WoT TD provides a way to describe interfaces
and meta-data of a Thing. It provides three Inter-
actionAffordances types that describe how a
potential entity can interact with a Thing:

• PropertyAffordance for describing the Thing
states;

• ActionAffordance for invoking the Thing
functions to change a state;

• EventAffordance for pushing the information
from a provider to a consumer, in an asynchro-
nous manner.

A skill representation of functionalities of a PLC, as
described in section III, provides an interface that
allows other entities to interact with it. The possibili-
ty to transform a skill-based engineering model into
one or multiple WoT TDs by means of Interaction-
Affordances is relevant to integrate brownfield de-
vices in the overall Edge-Cloud IIoT environments.
However, such a transformation is not trivial. For
instance, the concept of a state machine includes
methods to be invokable only when the machine
is in a certain state, i.e., the start method can only
be triggered when the machine is in the idle state.
The WoT community already started discussing that
dynamic behavior of InteractionAffordances 18, but
does not include aspects regarding legacy device
integration.

Therefore, research questions being addressed in
this context are:

 How can Thing Descriptions be extended in
order to express all relevant PLC components?
This refers to the capability to model the dyna-
mic behavior of methods in a state machine.

 How can Thing Descriptions be generated
automatically based on existing elements, i.e.
PLC program code, interface definition etc.?
Current approaches require the integration
of specific domain models, or tools such as
AutomationML to assist such a transformation
between an abstract PLC representation, i.e.
skill-based model, and a WoT TD. What other
possibilities can be considered?

18 https://github.com/w3c/wot-thing-description/issues/899

A proposal being followed is to consider a transfor-
mation as follows (rf. to section VI for further opera-
tional aspects):

• The state machine and its states can be mapped
to the WoT TD PropertyAffordances.

• The control methods could be transformed into
ActionAffordances.

• The transition event of the state machine are
mapped to the EventAffordances.

B. Building Intents in an Automated Way
Most of the existing, proposed solutions towards
Intent-based Networking focus on enabling a
facilitated management of enterprise networks and
there fore support the tasks of network administra-
tors [23]. Even though network management is a
relevant field also in IIoT, we want to explore Intents
in order to enable an automated adaption of net-
work functions based on Things’ requirements.
Therefore, we consider Things as Intent Users that
describe their requirements towards the network.
As Things are not able to express Intents in natural
language, for example, other forms to represent
their requirements are needed.

One possibility here is to use meta-information that
is associated with the IoT application. For example,
Thuluva et.al. introduce Recipes that act as descrip-
tion of how Ingredients, i.e. capabilities of Things,
shall interact with each other in order to compose
an IoT application [24]. Derived from such a Recipe
description, an Intent can be created that specifies
the communication requirements between Things,
i.e., routing paths. The Intents are sent to the net-
work, i.e., to a mediator such as an SDN controller,
or components such as switches and routers direct-
ly, that trigger low-level actions, e.g., an adaption
of routing tables, in order to ensure the required
behavior.

In that sense, the following research questions are
being addressed:

 What information is required from Things, i.e.
sensors, machines, and services, that would
enable the network to support their operation?
In other words, what meta-data is relevant to
be sent from Things to the network so that it
can self-adapt?

 How can the specific requirements be expressed
via Things capabilities?

An answer to these first questions would lead to a
technical specification of an Intent abstraction for IoT.

16

Especially in the context of legacy devices, such an
approach would need to consider existing techno-
logies and their constraints that are deployed in a
legacy system setup as an adaption of such estab-
lished technologies is hard to implement.

 Which network mechanisms, i.e. protocols,
functions, can be used to submit an Intent and
thereby inform the network about the required
behavior?

If possible, existing mechanisms should be (re-)used
here so that an integration of the proposed solution
into an existing network environment is more likely.

C. ICN and IoT
An advantage of ICN Publish-Subscribe models
is decentralization. From a network architectural
perspective, such models are promising candidates
for data transmission in highly heterogeneous IoT
scenarios. The ICN Publish-Subscribe semantics
support integrated security and data distribution/
decentralization via in-network caching. Although
the transient nature of IoT data may bring challen-

ges related to in-network caching, new research
findings corroborate that caching techniques speci-
fically designed for small transient data can actually
reduce the time-to-completion of requests [25][26].
Furthermore, the ICN interface abstraction model,
Face, is extremely relevant in supporting the sharing
of data between devices, as well as between appli-
cations and services.

Despite its advantages, by design, the ICN Publish-
Subscribe paradigm follows a pull-based communi-
cation approach, where consumers need to express
interest to receive each data packet. Such a pull-
based model may reduce performance in scenarios
holding a large number of resource-constrained,
mobile devices, as occurs in IoT environments, due
to the need to frequently transmit Interest packets.
This could require devices to be in reception mode
all the time, for instance, thus resulting in battery
drain. Or, it could require a method for fine-
grained synchronization, based on the rate at
which individual IoT devices emit data. Therefore,
a few research items that are being addressed in
IIoT are:

17

 Push models for IoT. The NDN design is based
on a pull model, which may not be enough in
the context of IoT environments, for instance,
in situations where devices emit periodic data
(periodic triggered data transmission), or in
alarm situations (event-triggered data transmis-
sion). Push based communications are required
in such situations and relevant to support a fas-
ter data forwarding. There are several possibili-
ties being advocated to implement push-based
communication, each of them with a specific
tradeoff, but performance for specific IoT
scenarios needs to be evaluated [22].

 The need to support multi-party data
synchronization. The NDN architectural
design considers ways to transfer data from
N producers to M consumers, in a way that is
data-centric and scalable. NDN guarantees
delivery even in the verge of intermittent
connectivity; it does not, however, guarantee
synchronization of data among consumers.
Such synchronization is usually required in en-
vironments where a group of N nodes keeps a
shared data set. Synchronization may also be
required in IIoT situations involving critical data.
For instance, support for remote management
may require strong synchronization among
control devices. The original design of CCN
references a Synchronization Protocol (SYNC)
[27]. The most recent evolution of NDN syn-
chronization protocols is the VectorSync
protocol [28] which is based on the Sync prin-
ciples, but improves data synchronization and
considers group membership management.

 In-network caching strategies. In-network
caching in NDN follows the widely research
principles developed for wired networks.
How ever, in the context of IoT scenarios, it is
necessary to consider constrained and hetero-
geneous devices, as well as mobility of devices,
aspects which were not supported by design
in the original protocols. Data is therefore tran-
sient, it expires after a specific time interval,
aspect that regular random caching and refe-
rence caching approaches did not address.

 Producer mobility support. NDN naturally
supports consumer mobility, and this type of
mobility is the most common case for IoT sce-
narios. For scenarios involving PIoT, and scena-
rios involving direct communication between
IoT devices/relays (such as autonomous vehicles),
there is the need to support producer mobility
as well. There are currently two type of so-
lutions being proposed to address producer
mobility: i) de-centralized, anchor-less solu-

tions where producers send alerts after moves
occur (late-binding); ii) in-network caching
policies for producers. Solutions that attempt
to optimize in-network caching are the second
type of approach where producers cache the
content ”around”. A possible approach to opti-
mize placement, having in mind IoT scenarios
such as connected vehicles, is to consider
context-awareness and measures for the pro-
ducer’s neighborhood: centrality, availability
of neighbors, as well as similarity. A detailed
debate on producer mobility aspects can be
found in [21].

 Naming spaces suitable for IIoT. The hierar-
chical naming supported by NDN is flexible
and allows to treat both data and services in
an equal way, agnostic from devices. It is
application expressive and as such, NDN does
not need to consider a name resolution ser-
vice such as DNS (even though external name
discovery services can be used). Naming
hierarchy is, however, not a strict require-
ment. It is used to assist forwarding as well
as security, aggregation, and other critical
features. Further more, NDN allows the use of
flat names, which are simply a special case of
hierarchical names that just have one compo-
nent. Even though NDN adopts 1-dimensional
hierarchical naming and lookup operations
based on longest-prefix matching, for IoT
environments users may want to express re-
quests with multi-dimensional attributes. This
is a highly relevant feature in the context of
IoT applications as data is transient, i.e., it can
be bound to specific location and to specific
periods of time. The translation of seman-
tics based, multi-dimensional naming into
the longest-prefix match followed by NDN is
not trivial and is still under development [29].
Multi-dimensional naming is more relevant in
the context of vehicular networks, for which
bi-directional approaches (with location) have
been considered [30]. Although flexible, the
NDN naming is still in an early development
phase, where there is not yet a consensus in
semantics adoption. Due to this, NDN names
that have rich application semantics may be an
issue, as they may leak individual information
behavior, for instance time and location data.
If several packets are collected, then the user
identity may be endangered, and this is a rele-
vant area to consider in the context of mobile
IoT environments. Obfuscation is feasible, but
it cannot endanger other NDN functionality,
such as name-based routing.

18

 The fortiss IIoT Lab
Brownfield Device
Integration Demonstrator
The demonstrator described in this section is being
developed in the context of the fortiss IIoT Lab19,
to explore the concepts and research questions
debated in this white paper.

The IIoT Lab is a playground of fortiss for training,
experimentation, and novel concept validation. It is
based on a series of self-contained demonstrators
covering different vertical markets of IIoT, such as
Smart Factories, Smart Cities, Smart Facilities.

19 https://www.fortiss.org/forschung/living-lab/detail/iiot-lab

The demonstrator described in this section is focused
on the applicability of IIoT in Smart Factories, and
specifically on aspects concerning an automated
brownfield device integration in IIoT environments
(rf. to the questions in section V.A.). The section
starts with an exemplar use-case, and then pro-
vides details on the testbed being set, its actors, and
goals.

A. Exemplar Use-case
Thomas is a production manager at a factory. Due
to globalization and increased market demands, the
company that Thomas works for needs to optimize
its production. For this, Thomas is investing in an
IIoT open-source system, which provides improved
efficiency via data analysis on the Cloud. However,
part of the equipment in the factory is not suppor-
ted by the acquired Cloud computing platform. This
is the case, for instance, of a sorting machine for
which downtime causes and their impact are not
clearly understood. The machine sometimes stops
operating with no obvious reason. The connected
machine terminal then states that the sorting con-
tainer is full even if it is not. This is because the in-
ternal memory of the machine counts the number
of produced pieces. When the counter exceeds a
certain limit, the machines stops. Usually, a human
operator needs to walk over, acknowledge the war-
ning and force the machine to continue. Thomas
believes that this type of situation can be circum-
vented via the integration of the machine into the
IIoT acquired platform, meaning first that additional
sensors can assist in a more quick detection of
downtime, and second, that such platform could
reduce the need for manual intervention.

For that purpose, on the IIoT gateway, an element
that is part of the acquired IIoT platform, the IT de-
partment installs a new solution under developed
by fortiss, coined in this description as BFThing.
BFThing provides a way for a legacy device to be
integrated into open-source IIoT systems via an
automated PLC description into a WoT.

Via this novel software module, an Edge/Fog de-
vice, or an IIoT gateway shall be able to support
bi-directional connectivity to brownfield devices.
Standardized communication protocols and data
models from IIoT domain as well as conversion
tools to integrate legacy devices facilitate the con-
nection buildup. Thereby, a smooth and seamless
connectivity is established.

B. Technical Description
A high-level illustration of the demonstrator is pro-
vided in Figure 3. An Edge node (in our case, an
IIoT gateway) hosts BFThing, the novel middleware
developed by fortiss. This middleware can be loca-

19

Figure 3: Automated integration of brownfield devices via the fortiss BFThing middleware.

Actions

Properties,
events

Skill-based
brownfield devices

fortiss middleware
Skill-based engineering

PLC abstraction

IIoT devices

fortiss
middleware

BFThing CLOUD

WoT TD

Edge node/IoT gateway

ted on the Edge, or on the Cloud. BFThing receives
input (currently via OPC-UA; on a later stage agnos-
tic to the underlying protocol) from the field-level
skill-based PLC abstraction model and provides an
automated transformation to a WoT TD. The left-
hand skill-based engineering middleware converts
the proprietary technologies to domain-specific
standards, such as OPC-UA. Thereby, it is possible
to create a formal description of the machine’s
data and functionalities using skill-based modeling
approaches. The information gathered and trans-
formed by BFThing into a standardized WoT format
includes the machine’s type, the available data, data
types and properties, a description of the invokable
actions, and how to call them. BFThing, therefore,
handles an automated translation of the skill-based
engineering abstraction middleware to a WoT TD
format, and also handles the bi-directional com-
munication to brownfield devices. It instantiates all
needed communication channels, e.g., data sub-
scriptions and communication clients. As illustrated,
in a first step, the output of the description of the

field-level device will be combined, derived from
BFThing output to e.g. a WoT node/Node-Red, with
other measurement values coming from IIoT sen-
sors. For instance, the machine emits a message
notifying that the fill container is full. The sensors
provide measurement concerning such level. By
relying on BFThing, it is feasible to fuse measure-
ments from the PLC and additional sensors thus
improving the accuracy in terms of potential mea-
surements. As also illustrated, in this demonstrator
the outcome will be sent to a personal device (e.g.,
a rugged tablet) of a human operator, where an API
developed by fortiss will provide the visualization
of results and also access to specific actions to be
triggered by a human operator. For instance, the
person can acknowledge the warning and force the
machine to continue, by clicking a specific button
which triggers an action via the middleware on the
IoT gateway. The information about the available
actions and how to trigger them is retrieved from
the machine’s TD and is sent to a personal device
carried by the user.

20

 Summary
This white paper provides an overview on current
semantic interoperability paths being tackled in
the IIoT area, by fortiss. Semantic technologies
are being used to automate the integration of OT
systems to end-to-end IT systems, via a full and
automated interconnection of Things for different
vertical domains. For that purpose, there are several
aspects currently being addressed based on a se-
mantic object notion derived from the WoT recent
standards:

 integration of brownfield devices via an auto-
mated transformation of a skill-based enginee-
ring description into a WoT description format.

 adaptation of the network services via intent-
based networking.

 development of ”Intents” in a way that assists
in bringing application level objectives into the
network layers.

 exploitation of information-centric networking
paradigms for a decentralized Publish-Subscribe
data exchange, such as the receiver-driven
publish-subscriber approach from ICN/NDN.

 References
[1] R. M. Zein Nader (editor), “IEEE Nendica
Report: Flexible Factory IoT: Use Cases and Com-
munication Requirements for Wired and Wireless
Bridged Networks,” in IEEE-SA Industry Connections
Report. IEEE 802.1-19-0026-06, 2020.

[2] M. McCool, M. Kovatsch, T. Kamiya, V.
Charpenay, and S. Kabisch,¨ “Web of things (WoT)
Thing Description,” W3C, W3C Recommenda-
tion. April 2020. Available at: https://www.w3.org/
TR/2020/REC-wot-thingdescription-20200409/.

[3] E. Korkan, H. B. Hassine, V. E. Schlott, S.
Kabisch, and S. Steinhorst,¨ “Wotify: A platform to
bring web of things to your devices,” arXiv preprint
arXiv:1909.03296, 2019.

[4] R. Mosshammer, A. Einfalt, A. Lugmaier, J.
Hodges, and F. Michahelles, “Semantic annotation
engine for smart grid applications,” inProc. 5th
International Conference on the Internet of Things
(IOT). IEEE, 2015, pp. 132–137.

[5] L. Racchetti, C. Fantuzzi, L. Tacconi, and
M. Bonfe, “Towards an` abstraction layer for plc
programming using object-oriented features of
iec61131-3 applied to motion control,” inProc.
IECON 2015 - 41st Annual Conference of the IEEE
Industrial Electronics Society, pp. 000298– 000303,
2015.

[6] N. E. Petroulakis, E. Lakka, E. Sakic, V. Kulkarni,
K. Fysarakis, I. Somarakis, J. Serra, L. Sanabria-Russo,
D. Pau, M. Falchetto et al., “Semiotics architectural
framework: End-to-end security, connectivity and
interoperability for industrial iot,” inProc. in IEEE
Global IoT Summit (GIoTS)., pp. 1–6. 2019.

[7] E. Korkan, S. Kaebisch, M. Kovatsch, and S.
Steinhorst, “Safe interoperability for web of things
devices and systems,” inProc. in Languages, Design
Methods, and Tools for Electronic System Design.
Springer, 2020, pp. 47–69.

[8] M. Behringer, M. Pritikin, S. Bjarnason, A.
Clemm, B. Carpenter, S. Jiang, and L. Ciavaglia,
“Autonomic Networking: Definitions and Design
Goals,” Internet Requests for Comments, RFC
Editor, RFC 7575, June 2015. [Online]. Available at:
http://www.rfc-editor.org/rfc/rfc7575.txt.

[9] A. Clemm, L. Ciavaglia, L. Granville, and J.
Tantsura, “Intent-Based Networking - Concepts
and Definitions,”. Internet draft, Network Working
Group, Expired. Available at: https://tools.ietf.org/
html/draft-irtf-nmrg-ibn-concepts-definitions-01.

[10] C. Li, O. Havel, W. Liu, P. Martinez-Julia, J.
Nobre, D. Lopez. “Intent classification”. IETF draft,
Network Working Group, Informational. Nov 2019
(expired). Available at: https://tools.ietf.org/html/
draft-li-nmrg-intent-classification-02.

[11] H. van der Veer and A. Wiles, “Achieving Tech-
nical Interoperability the ETSI Approach,” European
Telecommunications Standards Institute, Tech. Rep.,
04 2008.

[12] M. Bauer, H. Baqa, S. Bilbao, A. Corchero,
L. Daniele, I. EsnaolaGonzalez, I. Fernandez, O.
Franberg, R. Garcia Castro, M. Girod-Genet,¨ P.
Guillemin, A. Gyrard, C. El Kaed, A. Kung, J. Lee, M.
Lefranc¸ois, W. Li, D. Raggett, and M. Wetterwald,
“Semantic iot solutions - a developer perspective,”
Tech. Rep., 10 2019.

[13] E. Lakka, N. E. Petroulakis, G. Hatzivasilis, O.
Soultatos, M. Michalodimitrakis, U. Rak, K. Waledzik,
D. Anicic, and V. Kulkarni, “End-to-end semantic
interoperability mechanisms for iot,” in 2019 IEEE
24th International Workshop on Computer Aided

21

Modeling and Design of Communication Links and
Networks (CAMAD), 2019, pp. 1–6.

[14] K. Dorofeev and A. Zoitl, “Skill-based Engi-
neering Approach using OPC UA Programs,” in IEEE
16th International Conference of Industrial Informa-
tics (INDIN), Jul. 2018.

[15] P. Zimmermann, E. Axmann, B. Brandenbour-
ger, K. Dorofeev, A. Mankowski, and P. Zanini, “Skill-
based Engineering and Control on Field-Device-
Level with OPC UA,” in Proceedings of the IEEE In-
ternational Conference on Emerging Technologies
And Factory Automation (ETFA), Sep. 2019.

[16] A. Bröring,J. Seeger, M. Papoutsakis,
K. Fysarakis, and A. Caracalli, “Networking-aware IoT
application development,” MDPI Sensors, vol. 20,
no. 3, p. 897, feb 2020. [Online]. Available:
https://www.mdpi.com/1424-8220/20/3/897.

[17] Y. Elkhatib, G. Coulson, and G. Tyson,
“Charting an intent driven network,” in 2017 13th
International Conference on Network and Service
Management (CNSM), 2017, pp. 1–5.

[18] A. Elhabbash, G. S. Blair, G. Tyson, and Y.
El-khatib, “Network conscious edge service adapta-
tion,” 2018.

[19] Q. Technologies, “LTE Direct Always-on
Device-to- Device Proximal Discovery,” no. August,
pp. 1–13, 2014.

[20] M. Meddeb, A. Dhraief, A. Belghith, T. Monteil,
K. Drira, and S. AlAhmadi, “Named data networking:
A promising architecture for the internet of things
(iot),” International Journal on Semantic Web
and Information Systems (IJSWIS), vol. 14, no. 2,
pp. 86–112, 2018.

[21] Rute C. Sofia, Guidelines towards Information-
Driven Mobility Management. MDPI Future Internet,
11(15)111, DOI: 10.3390/fi11050111. May 2019.

[22] R. C Sofia and P. M Mendes, “An overview on
push-based communication models for informa-
tion-centric networking,”. MDPI Future Internet,
vol. 11, no. 3, p. 74, 2019.

[23] L. Pang, C. Yang, D. Chen, Y. Song, and M.
Guizani, “A Survey on Intent-Driven Networks,”
IEEE Access, vol. 8, pp. 22862–22873, 2020.
[Online]. Available: https://ieeexplore.ieee.org/
document/8968429.

[24] A. S. Thuluva, A. Broring, G. P. Medagoda,
H. Don, D. Anicic,¨ and J. Seeger, “Recipes for IoT
applications,” in Proceedings of the Seventh Inter-
national Conference on the Internet of Things - IoT
’17. New York, New York, USA: ACM Press, oct 2017,
pp. 1–8. [Online]. Available: http://dl.acm.org/
citation.cfm?doid=3131542.3131553.

[25] S. Vural, P. Navaratnam, N. Wang, C. Wang, L.
Dong, and R. Tafazolli, “In-network caching of inter-
net-of-things data,” in 2014 IEEE International
Conference on Communications (ICC). IEEE, 2014,
pp. 3185– 3190.

[26] S. Vural, N. Wang, P. Navaratnam, and R. Ta-
fazolli, “Caching transient data in internet content
routers,” IEEE/ACM Transactions on Networking,
vol. 25, no. 2, pp. 1048–1061, 2016.

[27] H. B. Abraham and P. Crowley, “Performance
measurement of the ccnx synchronization proto-
col,” in Architectures for Networking and Commu-
nications Systems. IEEE, 2013, pp. 121–122.

[28] W. Shang, A. Afanasyev, and L. Zhang,
“Vectorsync: distributed dataset synchronization
over named data networking,” in Proceedings of
the 4th ACM Conference on Information-Centric
Networking, 2017, pp. 192– 193.

[29] S. Gao, H. Zhang, and B. Zhang, “Supporting
multi-dimensional naming for ndn applications,”
in 2016 IEEE Globecom Workshops (GC Wkshps).
IEEE, 2016, pp. 1–6.

[30] D. Saxena, V. Raychoudhury, N. Suri, C.
Becker, and J. Cao, “Named data networking:
a survey,” Computer Science Review, vol. 19,
pp. 15– 55, 2016.

22

Publisher
fortiss
www.fortiss.org
© 2021

Authors
Kirill Dorofeev
Hendrik Walzel
Prof. Dr. Rute C. Sofia

Layout
Sonja Taut

Print
viaprinto | CEWE Stiftung & Co. KGaA
Martin-Luther-King-Weg 30a
48155 Münster

ISSN Print ISSN Online
2699-1217 2700-2977

1. Edition, January 2021

Picture credits

Titel: shutterstock ©  ZinetroN
Seite 4: shutterstock ©  PopTika
Seite 6: shutterstock ©Blackboard
Seite 8: shutterstock ©DrHitch
Seite 13: shutterstock ©Ustyna Shevchuk
Seite 16: shutterstock ©ESB Professional
Seite 18: shutterstock ©spainter_vfx
Seite 22: fortissGmbH © Kathrin Kahle

Acknowledgements
This work has been partially supported by funding
from the BMWi project Mittelstand 4.0-Kompetenz-
zentrum Augsburg, reference nr 01MF16002E,
2020.

Imprint

23

Although this white paper was prepared with the
utmost care and diligence, inaccuracies cannot be
excluded. No guarantee is provided, and no legal
responsibility or liability is assumed for any damages
resulting from erroneous information.

fortiss is the Free State of Bavaria research institute
for software-intense systems based in Munich. The
institute’s scientists work on research, development
and transfer projects together with universities and
technology companies in Bavaria and other parts
of Germany, as well across Europe. The research
activities focus on state-of-the-art methods, tech-
niques and tools used in software development and
systems & service engineering and their application
with cognitive cyber-physical systems such as the
Internet of Things (IoT).

fortiss is legally structured as a non-profit limited
liability company (GmbH). The shareholders are the
Free State of Bavaria (majority shareholder) and the
Fraunhofer-Gesellschaft zur Förderung der ange-
wandten Forschung e.V.

24

fortiss GmbH
Guerickestraße 25
80805 Munich
Germany
www.fortiss.org
Tel.: +49 89 3603522 0
E-Mail: info@fortiss.org

