2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER), pp. 1-12
2022 · doi: 10.1109/SANER53432.2022.00012
The SZZ algorithm represents a standard way to identify bug fixing commits as well as inducing counterparts. It forms the basis for data sets used in numerous empirical studies. Since its creation, multiple extensions have been proposed to enhance its performance. For historical reasons, related work relies on commit messages to map bug tickets to possibly related code with no additional data used to trace inducing commits from these fixes. Therefore, we present an updated version of SZZ utilizing pull requests, which are widely adopted today. We evaluate our approach in comparison to existing SZZ variants by conducting experiments and analyzing the usage of pull requests, inner commits, and merge strategies. We base our results on 6 open-source projects with more than 50k commits and 35k pull requests. With respect to bug fixing commits, on average 18% of bug tickets can be additionally mapped to a fixing commit, resulting in an overall F-score of 0.75, an improvement of 40 percentage points. By selecting an inducing commit, we manage to reduce the false-positives and increase precision by on average 16 percentage points in comparison to existing approaches.