Towards Assurance of LLM Adversarial Robustness using Ontology-Driven Argumentation

Tomas Bueno Momčilović, Beat Buesser, Giulio Zizzo, Mark Purcell and Dian Balta

July 2024 · Valletta, Malta

abstract

Despite the impressive adaptability of large language models (LLMs), challenges remain in ensuring their security, transparency, and interpretability. Given their susceptibility to adversarial attacks, LLMs need to be defended with an evolving combination of adversarial training and guardrails. However, managing the implicit and heterogeneous knowledge for continuously assuring robustness is difficult. We introduce a novel approach for assurance of the adversarial robustness of LLMs based on formal argumentation. Using ontologies for formalization, we structure state-of-the-art attacks and defenses, facilitating the creation of a human-readable assurance case, and a machine-readable representation. We demonstrate its application with examples in English language and code translation tasks, and provide implications for theory and practice, by targeting engineers, data scientists, users, and auditors.

subject terms: peng

url: https://www.researchgate.net/publication/380922433_Towards_Assurance_of_LLM_Adversarial_Robustness_using_Ontology-Driven_Argumentation