FLA

FLA

Durchgängige, umfassende und kontinuierliche Konformitätsprüfung für Föderiertes Lernen

FLA

Compliance-by-design für Föderiertes Lernen (FL) auf der Grundlage einer vielschichtigen und multiperspektivischen Sicherheit.

Projektbeschreibung

Föderiertes Lernen (FL) ermöglicht die gemeinsame Nutzung von Wissen unter Wahrung der Privatsphäre der Daten. Mehrere Akteure trainieren gemeinsam Modelle, indem sie datenschutzfreundliche Techniken des maschinellen Lernens anwenden, ohne die für das Training verwendeten Rohdaten teilen zu müssen.

Allerdings kann FL immer noch anfällig für das Abfangen der Kommunikation oder die Preisgabe privater Daten durch Inferenzangriffe sein. Dies ist besonders in stark regulierten Bereichen von Bedeutung, in denen die Vertrauenswürdigkeit von FL für ihre praktische Einführung entscheidend ist. Zur Vertrauenswürdigkeit gehören im Allgemeinen explizite Informationen über die Daten, z. B. über ihre Herkunft oder Verzerrung, und ihre Verarbeitung, z. B. Zustimmung, Erklärbarkeit oder Fairness. Aus rechtlicher Sicht ist die Vertrauenswürdigkeit mit der Rechtmäßigkeit und der Einhaltung von Gesetzen verknüpft, woraus sich die Notwendigkeit ergibt, die Einhaltung der Gesetze für jeden Teilnehmer sowie für das gesamte föderierte Modell zu gewährleisten. Die Sicherstellung würde die Überprüfung der Entwurfszeit und der Laufzeit von FL sowie die Abschwächung von Risiken beinhalten.

Im Projekt Föderiertes Lernen Architektur (FLA) entwirft fortiss ein FL-System, das auf einer datenschutzfreundlichen Architektur aufbaut und modernste Techniken zur Verbesserung der Privatsphäre in allen Phasen integriert. Darunter differentielle Privatsphäre und homomorphe Verschlüsselung für Lernmodelle, praktische Anonymisierung sowie eine manipulationssichere Aufzeichnung über ein verteiltes Hauptbuch. Darüber hinaus bietet das System vielschichtige, multiperspektivische, allgegenwärtige und durchgängige formale Garantien für die Einhaltung der Vorschriften auf der Grundlage eines Wissensgraphen.

fortiss evaluiert seine Forschung am Anwendungsfall des kollaborativen Trainings eines Feedback-Textklassifikators. Bei dem Feedback handelt es sich um natürliche Texteingaben von Nutzern von Online-Diensten der öffentlichen Verwaltung. Die Aufgabe besteht darin, den zuständigen Abteilungen in der deutschen öffentlichen Verwaltung geeignete Feedback-Klassen zuzuordnen.

Forschungsbeitrag

In diesem Projekt trägt fortiss mit drei Hauptergebnissen bei:

  • eine Reihe von Architekturmustern für Privacy-by-Design FL,
  • eine Methode für eine vielschichtige und multiperspektivische Absicherung auf der Grundlage formalisierter Ansprüche,
  • eine Toolchain und eine Bibliothek von Ansprüchen rund um den European Artificial Intelligence Act (EU AI Act) und die Datenschutz-Grundverordnung (GDPR) für die Anwendung der Entwickler-Methode in praktischen Anwendungsfällen.

Förderung

Projektdauer

01.01.2023 - 31.07.2023

 Tomas Bueno Momcilovic

Ihr Kontakt

Tomas Bueno Momcilovic

+49 89 3603522 266
momcilovic@fortiss.org

 Mahdi Sellami

Ihr Kontakt

Mahdi Sellami

+49 89 3603522 171
sellami@fortiss.org

Projektpartner

Publikationen

  • 2024 Towards Assuring EU AI Act Compliance and Adversarial Robustness of LLMs Tomas Bueno Momčilović , Beat Buesser , Giulio Zizzo , Mark Purcell und Dian Balta In AI Act Workshop, 19th International Conference on Wirtschaftsinformatik, September 2024, Würzburg, Germany, 2024. Details URL BIB
  • 2024 Towards Assurance of LLM Adversarial Robustness using Ontology-Driven Argumentation Tomas Bueno Momčilović , Beat Buesser , Giulio Zizzo , Mark Purcell und Dian Balta In Valletta, Malta, 2024. xAI 2024: World Conference on eXplainable Artificial Intelligence. Details URL BIB
  • 2024 Emergent Needs in Assuring Security-Relevant Compliance of Information Systems Tomas Bueno Momčilović und Dian Balta In EICC 2024: European Interdisciplinary Cybersecurity Conference, pages 46–49, Xanthi, Greece, 2024. Association for Computing Machinery. Details DOI BIB
  • 2024 Challenges of Assuring Compliance of Information Systems in Finance Tomas Bueno Momčilović und Dian Balta In Software Quality as a Foundation for Security. SWQD 2024, volume 505 of Lecture Notes in Business Information Processing, pages 135–152, 2024. Springer. Details DOI BIB
  • 2023 Interaction Patterns for Regulatory Compliance in Federated Learning Mahdi Sellami , Tomas Bueno Momčilović , Peter Kuhn und Dian Balta In CIISR 2023: 3rd International Workshop on Current Information Security and Compliance Issues in Information Systems Research, co-located with the 18th International Conference on Wirtschaftsinformatik (WI 2023), September 18, 2023, Paderborn, Germany, pages 6-18, 2023. CEUR Workshop Proceedings. Details URL BIB